

Pediatric Pearls for the Adult Echocardiographer

Richard A. Humes, MD, FACC
Professor, Pediatrics
Wayne State University
Director, Cardiology
Children's Hospital of Michigan

Pearl

 A hard object produced within the soft tissue of a shelled mollusk

If you are going to image a patient with suspected congenital heart disease, think about the common things first

Congenital Heart Disease

Spectrum of Congenital Heart Disease - Frequency

Cardiac Malformation	% of CHD	M:F Ratio
Ventr. Septal Defect	18-28	1:1
Patent Ductus Arter.	10-18	1:2-3
Tetralogy of Fallot	10-13	1:1
Atrial Septal Defect	7-8	1:2-4
Pulmonary Stenosis	7-8	1:1
Transp. of Grt. Art.	4-8	2-4:1
Coarctation of Aorta	5-7	2-5:1
Atrioventric. Canal	2-7	1:1
Aortic Stenosis	2-5	4:1
Truncus Arteriosus	1-2	1:1
Tricuspid Atresia	1-2	1:1
Tot. Anom Pulm Veins	1-2	1:1

- Possibilities can be age specific if you are imaging children
 - → More likely to discover congenital defects in the first week of life
 - → Most heart murmurs in the 1-5 year age group are innocent and the heart is normal
 - * Defects in children which may escape detection early are subtle and asymptomatic that you need to look for ASD, bicuspid aortic valve
 - → Chest pain in teenagers is virtually never heart pain – echo is normal
 - * Know how to image coronary artery anatomy

If you are imaging adults with congenital heart disease, someone has probably been there before you

Congenital Heart Disease in Adults

- 85% of children with CHD survive to adulthood
- Currently >1 million patients over age 18 with CHD are alive in this country
- There are estimated to be <u>more</u> adult patients with CHD now than pediatric (<18 yrs) patients</p>
- ▼ This increases at ~3% per year
- 20,000 cardiac surgical procedures for CHD/year

The majority of adult CHD patients getting an echo will be post-op

Congenital Heart Disease A Brief History of Operations

<u>Year</u>	<u>Physician</u>	<u>Procedure</u>
1938	Gross	Ligation of PDA
1944	Blalock, Taussig	Systpulm. shunt
1945	Gross, Crafoot	Repair of coarctation
1952	Muller	Pulm. artery band
1953	Gibbon	Repair of ASD
1954	Lillehei	Repair of VSD
1954	Glenn	SVC-PA shunt
1954	Mustard	Atrial correction of TGA
1955	Lillehei, Kirklin	Repair of tetralogy of Fallot
1960	Waterston	Aorta-pulmonary shunt
1964	Rastelli	Conduit replacement of PA
1967	Rashkind	Balloon atrial septostomy
1971	Fontan, Kreutzer	Repair of tricuspid atresia
1976	Jatene	Arterial switch for TGA
1978		Cold blood cardioplegia

Palliative Operations

- If adult patients have had only one operation, they probably have 4 chambers
- If they have had multiple operations, at least one of them was palliative – and they may or may not have 4 chambers
- If they have had a palliative operation, it probably had something to do with the pulmonary blood flow
 - → Concentrate on the pulmonary arteries and the RV pressure

Pearl #2 - Before you start to examine

- History
- History
- History

* History includes old records

The adult patient is often unaware of details

Before you get out the TEE probe, think about what you are trying to image

Congenital Heart Disease Role of Transesophageal Echo (TEE)

- Helpful in hard-to-image adult patients
- Views are more limited than transthoracic
- Best for atrial, posterior, intracardiac structures
- Not as helpful for extracardiac defects and structures
- Needs a skilled examiner
- * Helpful, not perfect, and should not be a "knee-jerk" reaction

(Still have to know what to look for)

Congenital defects often make the heart look different. Use these differences to help you.

What's wrong with this picture?

What's the diagnosis?

But again, think about what you are looking for and trust what you see.

Case

Stop. Think. Look other places and trust what you see.

Case

Stop. Think. Look other places and trust what you see.

Case

Know (and practice) some of our "special" views

- Crab
- Caval
- Suprasternal
- Ductal
- Short axis sweep

Congenital Heart Disease Special Pediatric Views

Suprasternal Short Axis View

Congenital Heart Disease Suprasternal Short Axis View

Congenital Heart Disease Special Pediatric Views

Subcostal Caval View

Congenital Heart Disease

Subcostal Caval View

Congenital Heart Disease Special Pediatric Views

Suprasternal Long Axis View

In infants this view may also be obtained from left and right parasternal locations

Congenital Heart Disease

Special Pediatric Views

Arch Position Anatomy

Congenital Heart Disease Suprasternal Long Axis View

Congenital Heart Disease Special Pediatric Views

Arch Position
Suprasternal Short-axis View

Congenital Heart Disease Suprasternal Short Axis – Arch Position

Congenital Heart Disease Special Pediatric Views

Parasternal Ductal View

• (High Left Parasternal)

Congenital Heart Disease **Ductal View**

Congenital Heart Disease Special Pediatric Views

Parasternal Short-Axis "Sweep"

* Don't use a long axis "sweep".

Congenital Heart Disease Parasternal Short Axis Sweep

- Keep things simple and don't over think things. A good basic echo exam will give you at least 99% of what you need to know.
- Adults moan and have tough images
- Babies cry and have great images
- It all balances out in the end

Thank You

Sometimes it's not what you see, it's what you don't see

Sometimes what you see can have more than one explanation. It all has to make sense.

Case

- 17 year old seen early in life for a heart murmur.
- Evaluated by a cardiologist and told that there was a "hole in the heart", but no intervention advised
- At age 2-3 told that no further follow-up was needed.
- Recently moved to our area, saw a new doctor and asked us to re-evaluate

Case

- Clinically doing well
- 3/6 holosystolic murmur at mid-LSB, no diastolic murmurs

Case - Echocardiogram

Case 1 - Echocardiogram

Case - Echocardiogram

Case - Echocardiogram

Case – Echocardiogram - Finale

